Correction: HLA Haplotyping from RNA-seq Data Using Hierarchical Read Weighting

نویسندگان

  • Hyunsung John Kim
  • Nader Pourmand
چکیده

Correctly matching the HLA haplotypes of donor and recipient is essential to the success of allogenic hematopoietic stem cell transplantation. Current HLA typing methods rely on targeted testing of recognized antigens or sequences. Despite advances in Next Generation Sequencing, general high throughput transcriptome sequencing is currently underutilized for HLA haplotyping due to the central difficulty in aligning sequences within this highly variable region. Here we present the method, HLAforest, that can accurately predict HLA haplotype by hierarchically weighting reads and using an iterative, greedy, top down pruning technique. HLAforest correctly predicts >99% of allele group level (2 digit) haplotypes and 93% of peptide-level (4 digit) haplotypes of the most diverse HLA genes in simulations with read lengths and error rates modeling currently available sequencing technology. The method is very robust to sequencing error and can predict 99% of allele-group level haplotypes with substitution rates as high as 8.8%. When applied to data generated from a trio of cell lines, HLAforest corroborated PCR-based HLA haplotyping methods and accurately predicted 16/18 (89%) major class I genes for a daughter-father-mother trio at the peptide level. Major class II genes were predicted with 100% concordance between the daughter-father-mother trio. In fifty HapMap samples with paired end reads just 37 nucleotides long, HLAforest predicted 96.5% of allele group level HLA haplotypes correctly and 83% of peptide level haplotypes correctly. In sixteen RNAseq samples with limited coverage across HLA genes, HLAforest predicted 97.7% of allele group level haplotypes and 85% of peptide level haplotypes correctly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering of Short Read Sequences for de novo Transcriptome Assembly

Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...

متن کامل

Bias Correction in RNA-Seq Short-Read Counts Using Penalized Regression

RNA-Seq produces tens of millions of short reads. When mapped to the genome and/or to the reference transcripts, RNA-Seq data can be summarized by a very large number of short-read counts. Accurate transcript quantification, such as gene expression calculation, relies on proper correction of sequence bias in the RNASeq short-read counts. We use a linear model for the sequence bias, which is muc...

متن کامل

Assessing Dissimilarity Measures for Sample-Based Hierarchical Clustering of RNA Sequencing Data Using Plasmode Datasets

Sample- and gene-based hierarchical cluster analyses have been widely adopted as tools for exploring gene expression data in high-throughput experiments. Gene expression values (read counts) generated by RNA sequencing technology (RNA-seq) are discrete variables with special statistical properties, such as over-dispersion and right-skewness. Additionally, read counts are subject to technology a...

متن کامل

Universal Count Correction for High-Throughput Sequencing

We show that existing RNA-seq, DNase-seq, and ChIP-seq data exhibit overdispersed per-base read count distributions that are not matched to existing computational method assumptions. To compensate for this overdispersion we introduce a nonparametric and universal method for processing per-base sequencing read count data called FIXSEQ. We demonstrate that FIXSEQ substantially improves the perfor...

متن کامل

Improving PacBio Long Read Accuracy by Short Read Alignment

The recent development of third generation sequencing (TGS) generates much longer reads than second generation sequencing (SGS) and thus provides a chance to solve problems that are difficult to study through SGS alone. However, higher raw read error rates are an intrinsic drawback in most TGS technologies. Here we present a computational method, LSC, to perform error correction of TGS long rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013